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Globally Regular Model of the Electron in General 
Relativity 
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Necessary conditions on a reasonable description of a physical object are 
suggested. The globally regular solutions of Petrov type D of the Einstein- 
Maxwell field equations and their generation solutions are derived for a charged 
perfect fluid sphere. A globally regular model of a stationary electron is 
established in the framework of general relativity. The quantitative relations 
between the inertial and the electromagnetic mass of an electron and between 
the electron mass and radius are explained. 

1. INTRODUCTION 

For  a long time, people have looked for a complete theory which 
describes the behavior of  an electron. From Maxwell-Lorentz  theory to 
Mie's and Weyl's theories, they all tried to explain the electromagnetic 
origin of  mass in a classical sense, but faced difficulties. For  example, a 
nonelectromagnetic force is needed to overcome the electrostatic repulsion 
of  the charge and to prevent the electron from "exploding" (Jackson, 1975; 
Pauli, 1958, p. 184). 

Quantum electrodynamics has had great success in describing the 
e lec t ron-photon interaction, but artificial suppositions and techniques such 
as renormalization must be used to explain the finite electron mass 
(Fukuda et al., 1949). The origin of  the finite electron mass is a puzzling 
problem in both classical electromagnetic theory and quantum theory. 

Since the 1970s some authors (Horwitz and Katz, 1971; Katz and 
Horwitz, 1971) have made new tries in the framework of  general relativity. 
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In particular, Tiwari et aL (1985) and Gautreau (1985) (TRKG) have 
shown the possibility of constructing pure electromagnetic mass models of 
the electron in the framework of general relativity. It becomes a pressing 
task to check the obtained conclusion and explore other possible gravita- 
tional models of an electron. 

In the present work, a criterion for a reasonable description is given 
first. A possible globally regular model of the electron is then discussed 
using a Heintzmann-like technique (Kramer et al., 1980). 

2. PHYSICALLY REASONABLE DESCRIPTION 

Any reasonable descripti9n of a physical object should satisfy the 
following requirements: 

1. The field source which is used to describe an object must be physically 
reasonable, i.e., the energy-momentum tensor of the field source must satisfy 
the dominant energy conditions given by Hawking and Ellis (1973). 

2. The metric coefficients are free from singularities except for trivial 
coordinate singularities. 

3. The whole space-time of the model is causally well behaved and 
smoothly matched. 

The above requirements are actually the conditions for globally regular 
solutions given by Shen and Zhu (I 985). Thus we suggest that the necessary 
conditions to provide a reasonable description for a physical object in the 
framework of general relativity should be that the Einstein field equations 
associated with the model can give globally regular solutions. In accordance 
with this criterion, the model given by Israel (1970) is not a physical realistic 
model and the model given by TRKG can be accepted. 

3. GLOBALLY REGULAR SOLUTIONS OF PETROV TYPE D 

In the preceding section, we pointed out that the particular solutions 
obtained by TRKG are globally regular solutions. These solutions have no 
proper singularities and are smoothly matched on the boundary. 

In this section we further consider globally regular solutions of Petrov 
type D for a charged perfect fluid sphere. 

The energy-momentum tensor of a charged perfect fluid sphere is 

(r ~ rb) 

(r ~ r~) 
(1) 
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The Einstein-Maxwell field equations take the form 

1 
R;~v --  ~ gxvR = 8rrT~v 

F ~  = 4 ~ J  ~ 

F,~ w + Fp,l,v + Fw,,~ = 0 

uith 
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(2) 

(3) 

(4) 

JZ = Pe V ~ (5) 

V~ = ( -goo)  -1/2 (6) 

V"= 0 (7) 

V~V~ = -- 1 (8) 

where #, p, and rb are the mass density, the pressure, and the radius of the 
charged perfect fluid sphere, respectively. 

The exterior metric (r -> rb) is the Reissner-Nordstr6m metric, 

( r ~ - r  f d t 2 +  1 - -  r - ; T j  dr2 

+ rE(dO 2 + sin20 d~b 2) (9) 

The coordinate r used in equation (9) has a clear physical meaning. By a 
measurement of  the physical length of a great circle we can determine the 
value of  the coordinate r for the sphere considered. The metric is of Petrov 
type D. Here M and Q are the total mass and the total charge of  the 
sphere, respectively. 

The interior metric is assumed to also be of Petrov type D and have 
the form 

ds 2 = - e  2v dt  2 + e 2"l dr 2 + r2(dO 2 -b sin20 dt~ 2) (10) 

where 

e 2v = e -2a (11) 

Then the Einstein-Maxwell field equations (r < rb) can be reduced to 

d 
( _ g )  1/2 dr [ ( - g )  l / 2 F ~  = 47rp, e -~ (12)  

\ r  2 r ] r 2 = - - 8 n #  (13) 
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, 
- - - - e  = --8~p + E  2 
r 2 ~ r  2 

e-2~[v'2 ' -  v ' 2 - - v " - - ( ~ ) ] =  --8r~p - E  z 

From equations (11)-(15),  we obtain 

e 2v = e -24 = 1 - 2[m(~ + m(e)(r)] 
r 

with 

dE2(r) + 4 E 2 ( r ) = -  8xtz" 
dr r 

E~(O = 

F(r) = 

Q(r) = 

m(~ = 

m(O(r) = 

(14) 

(15) 

Q2 

+ 7  (16) 

(17) 

(18) 

M(rb) = m(~ + m(e)(rb) (24) 

where p* = pee ~ is the proper charge density, m(~ is the pure gravita- 
tional mass, m(e)(r) is the electromagnetic self-energy mass, and M(r) is the 
total mass. 

As seen from equation (18), the electric field is closely related to the 
density of  the perfect fluid. For  any given reasonable charge or mass 
distributions, we can find the globally regular solutions. 

We assume that # = Ar~+ B, where A and B are constants. Thus 
equations (16)-(23)  give 

l[f 1 8 n A ~ r ~ C  E2(r)  --- ~-~ - -  8~lt 'r  4 dr + C = - ~ + 4  + ~ (25) 

8rcAotr ~ + 4 
Q2(r) = E2(r)r 4 = - . + C (26) 

~ t+4  

Q2 
- - e o l F  ~ = - -  r4 (19) 

f E2(r)r 2 dr (20) 

4rz tl r p*r 2 dr (21) 

4~ Izr 2 dr (22) 
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{. 
F(r) = J E~(r)r 2 dr = 

fo m(~ = 4re p r  2 dr  - - -  

8 n A ~ r  ~ + 3 C 
- - - + D  

(~ + 4)(~ + 3) r 

4 n A : . .  + 3 4 ~ B r  3 
+ - -  

~ + 3  3 

4 n A ~ r  �9 + 3 D 

�9 + 3  2 

r, ] 
m(~)(r) = -~ + F ( r )  = 

p =  - I ~  = - ( A r ~  + B )  

3 2 n A r  ~ + 2 
e 2v = e - 2 ; ~  _ 1 

(~ + 4)(~ + 3) 

Here C and D are integration constants. 
The regularities demand 

87rBr 2 C D 
- - +  

3 r 2 r 

C = D  = 0  

(27) 

(28) 

(29) 

(30) 

(31) 

and 

~->0 

From equation (21). we obtain the proper charge density 

pe  ~ = ( - -A{~)  1/2(87[) - 1/2(~ ..{_ 4)1/2r~/2)- 1 

The regularity of the charge density at r = 0 further l i m i t s ,  to 

~ > 2  

(32) 

The junction conditions at r = rb give 

(~ + 4 ) Q  2 
A =  

8rc~r~, + 4 

(~ + 4)Q: 
B = - A r ~ , -  87[~r~ 

Then we have 

(33) 

(34) 

p = - #  = 87[r 4 1 - 

(~ + 4 ) Q r ( ~ / 2 ) -  1 

P*e -- 87[r~/2)+ 

E 2 _ a 2r2 

r6 

(35) 

(36) 

(37) 
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4Q2r  = + 2 e 2v = e-2~ = 1 (~ + 4)Q2r2 + (38) 
3~r 4 =(~ -t- 3)r~, + 4 

m(O)(r)_ ( = + 4 ) Q  2r3 (= + 4)Q2r =+3 
6=r~ - 20@r + 3)r~ +4 (39) 

m(e)(r) = (= + 4)Q2r~+ 3 
2(~ + 3)r~, +4 (40) 

The total mass of the charged perfect fluid sphere is given by 

M ( r )  = m (~ + m~e)(r) (~ + 4)Q2r3 (~ - 1)(~ + 4)Q2r ~+ 3 
- 6=r~ 2~(= + 3)r~, +4 (41) 

Substituting r = rb into equations (39)-(41) yields 

m(O)(rb) = (oe + 4)Q 2 . (42) 
6(~ + 3)rb 

m<e)(rb) = (~ + 4)Q 2 (43) 
2(= + 3)rb 

2(= + 4)Q 2 
n ( r b )  - (44)  

3(= + 3)rb 

If  M and Q represent the total mass me and charge e of an electron, 
respectively, then equations (42)-(44) mean 

2(oc + 4) 
rb = 3(= + 3) re (45) 

where re = e2/me is the classical electron radius. 
For = > 2, the radius of the charged sphere with the mass distribution 

It = Ar= + B satisfies the following inequality: 

4 2 
~ r  e >-~ r b > ~ r e  

In addition, we see from equations ( 4 2 ) - ( 4 4 )  

m (~ = M = "~ m e (46) 

m(e) = 3 3 M = ~ me (47) 

which are independent of r The case of = = 2 gives the results for the 
uniform charge density distribution obtained by Tiwari et  al. (1985). 
Similarly, for other reasonable charge or mass distribution, we can easily 
find globally regular solutions of Petrov type D. 
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4. G E N E R A T I O N  S O L U T I O N S  

So far, the obta ined  solutions are all o f  Pe t rov  type D. The  equa t ion  
o f  state for  ma t t e r  is p = - /~ .  Are there globally regular  solutions o f  o ther  
type? We  discuss them with the help o f  a genera t ion technique. 

I f  we int roduce the new variables 

X ~ F  2 

y ~ e  v 

w = (1 -- e -2a ) /2x  

then for  the regular  charged perfect  fluid sphere, the E ins t e in -Maxwe l l  
field equat ions  ( 1 2 ) - ( 1 5 )  are 

8ntt + E 2 = 6w + 4xw,~ (48) 

8~zp -- E 2 = - 2 w  + 4( 1 - 2 x w ) y , x y -  1 (49) 

with 

( 2Xy,x + y)w,~ + ( 2y,x + 4xy ,~x)w -- 2 y , ~  - x - l y E 2  (50) 

When  E 2 =  0, equat ions  ( 4 8 ) - ( 5 0 )  reduce to those given by H e i n t z m a n n  
( K r a m e r  et  al., 1980). 

Quanti t ies  with a caret  cor respond  to the new solut ion and  quanti t ies 
wi thout  a caret  cor respond  to the old solution. Adop t ing  the H e i n t z m a n n  
generat ion technique,  we have  the new solut ion 

) 3 = y  = e v 

= Wo + [3wu 

$ -  2~. = e -24 _ 2 f l x w n  

87t/~ - g2 = 8np - E 2 - 2fl( 1 + 4Xy,xy - ~)wt~ 

8~Z/~ -I- E 2 = 87~kt + E 2 -'[- 2fl(3w/~ + 2xwu,,:  

i f2 = E 2 _ f l [ (Zxy ,~y-~  + 4 x 2 y , x x y - ~ ) w n  

+ ( 2 x 2 y ~ y  --1 _t_ X ) W H ,  x)]  

with 

E 2 = 2xy , xxy  - 1 - -  ( 2 x y , x y  - 1 + 4 x E y , x ~ y -  1)w ~ 

_ (2x2y , xy  --1 .~_ X)WO,x  

8rip -- E 2 = 4( 1 - 2Xwo)y ,xy  - l _ 2w ~ 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 



1694 Zhu and Shen 

8re# + E 2 = 6Wo + 4XWo,~ (59) 

w H = ( 2 x y , x + y ) - 2 e x p I 4 f ( 2 X y , x + y ) - l y , x d x  ] (60) 

For ease of representation, we discuss the ease with the mass distribu- 
tion # = Ar ~ + B (~ = 2). The old solution is 

6250" . 31250" .2'~ 112 
y = e ~ =  1 - - - ~ x  + 2---~x ) (61) 

e-2~ = 1 -- 2XWo (62) 

= ( 6 2 5  31252~0.  (63) 
Wo \512 4096 ]x~ 

8 ~ # = - g r i p  = (12~6546,8754096 ~)___axe (64) 

E2 15,625 0 . .  
= x ( 6 5 )  

4096 Xe 
4 H e r e  a = e2 /Xe ,  .~ = x / x e ,  x~ = r 2, x b = r~,  a n d  rb = ~re. T h e n  generaliza- 

tion of the above solution is 

"/1 625a ^ 31250" \1/2 
.~ = y = ~ - - ~  x + 2---~ 22) (66) 

/~2 = E 2 = 15,625a ~ (67) 
4096xe 

-z~ = e-Z~ _ 2flxw~r (68) 

8n/~ = 8n# + 2fl(3wH + 2xwz4,x) (69) 

8rcp = 8rcp -- 2fl( 1 + 4xy~,y - ~)wh. 

= --8n/~ + fl[(4 -- 8xy.xy-~)wu + 4xwh.,x] (70) 

where 

6250" ^ 3t25a A2 ~/' 6250" ̂  9375a A2 ~-4/3 

[ 2 / '  96 - a r c t g I ( ~  _ 1 )  • e x p ~ - ~  ~ l -~a  - 1 )  ,/z 

(71) 
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Wnx=" 256x~625a (1 - -~-15 x ̂ + ~-~9375 ax*2 15,625o"~ x'3'~_) 

x (1 625o" . 9375o" .2 ~-7/3 f 2 --'~x+~x) e x p t - i  ( 1 - ~ a -  1 ) 1,2 
\ 

x a r c t g [ ( ~ 2 - l ) ( & - 1 ) - ' / 2 ] }  (72, 

Application of the boundary condition ~ = 0 at x = Xb gives 

(46,875a 1875tr~( 1 625 9375a 2'~ a/3 
fl = \  8192x e ?/ 512XeJ \ --1-~ trr/ "t" 2-'~'~r/ ) 

( 1875o.~/ 15,625a 2 ) {2 9(l_~a )- , /2 
x 1 256 ~ 2048 q exp ~ --1 

x arctg[(~--l~(// \ l-~aa96-1)- 1/2]} (73) 

- 4-r 16/25 and where r /= Xb/Xe is a free parameter. For rb -- 5 e, we have r /= 
fl = 0. The new solution is simply the old solution given by Tiwari et aL 
(1985). 

Because cr = e2/x~ = 2.395 x 10 -43 ~ 1 for an electron, equation (73) is 
approximately reduced t o  

,,,(46,875/7 15~25) a (74) 
f l  - \ 8 1 9 2  - -  x ~  

4 Obviously, fl > 0 for q > 16/25 (i.e., rb > -~re), and fl < 0 for ~/< 16/25. 
A physically reasonable energy-momentum tensor should obey the 

dominant energy conditions 
/~ > 0 (75) 

< * (76) 

From equations (69), (71), (72), and (74), we see that 

8~ft = 8~# + 2fl(3w n + 2xwn, x) ~- 8n# + 6fl 

and the condition 

is equivalent to 

> 8rqs ->- 0 

-<- 8n/  

- 8g/2 < - 8~/~ + 4/3 < 8rq~ + 6fl 
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which is automatically satisfied for fl > 0. Therefore, the dominant energy 
conditions (75) and (76) hold. The obtained new solution is physically 
reasonable according to the criteria given in Section 2. 

In the new solution, the equation of state is 

p = -/~ + f l  [(4 - 8 x y , x y - ~ ) W H  + 4xWn,x] (77) 

It is seen that if the radius rb of the source is such that rb > ~re, there 
is another possible model relevant to the idea of Lorentz in which the 
pressure/~, the mass density/~, and the constant fl depend on charge e 2. 
And the equation of state is no longer p = - # .  

5. DISCUSSION 

A possible new pure-charge model has been obtained by using a 
Heintzmann-like generation technique. 

As some authors have pointed out, the electron's mass is associated 
with the Schwarzschild gravitational mass given by general relativity 
(Tiwari et al., 1985): 

I f  fs e2 1 r E 2 r 2 d r + ~  me = 4re #r 2 dr + ~ 

In order to understand correctly the origin of electron mass, we believe 
that the total mass should be divided into two parts: one of them is 
contributed from the inertial mass 

f: m(~ = 4~ #r 2 dr 

and the other from the electromagnetic field and its source 

1 E2r 2 dr + - -  
m(e)(r) = ~ 2r 

The calculation of Section 3 has shown that m (~ = �88 e and m (e) = ~me for 
the equation of state p = - # .  The result agrees with the conclusion that the 
total energy of a stationary electron is equal to four-thirds of its electro- 
magnetic energy given by Lorentz (Pauli, 1958, p. 185). 

A rough estimation of the inertial mass and electromagnetic self- 
energy mass for the new generation solution of Section 4 gives 

~ob~t Irblzr 2 ~0 b m (~ = 4n r 2 dr = 4n dr + 3fl r 2 dr 
do 

.,. 37,500e2_ ~/5/2 20,O00e______ 2 t13/2 

8192re 8192re 
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m<e,= 1 ~ rb j~2r2 _ e___~_ 2 
2 .Jo dr -~ 2rb 

1 ?'b e z 
= 2 L E2r2 dr + 2r--~b 

e 2 = 3125e2 r/5/2 + - - r / -1/2  

8192r e r e 

g = me~ + m<e) 

40,625e2 r/5/2 20,000e2 3,- e2 
= ~ r/ ~ q - - - r / - 1 / 2  

8192r, ~ 1 ~zr  e r e 

The total mass M and the ratio of  the inertial mass to the electromagnetic 
energy will vary with the free parameter  r 1 = (rb/r~) 2. 

It  is noteworthy that the dependence of  the inertial mass on the charge 
should only be regarded as a quantitative relation between the inertial and 
the electromagnetic mass rather than as the physical basis o f  the pure 
electromagnetic nature of  electron mass. 
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